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The importance of statistics and replication in microbiology

Storyline

Scientific studies aim to explain observed phenomena through hypotheses that generate
prediction which can be tested by comparison with experimental data. Both initial observation
of phenomena and experimental testing involve collection and analysis of data. While these
data may be qualitative, both the description of natural phenomena and the critical testing of
hypotheses are more thorough, exacting and complete if quantitative data are employed. For
example, we might observe that pasteurisation reduces bacterial abundance in milk, but it is of
much greater  value if  we observe that pasteurisation reduces abundance to 50% or 1% or
0.0001%. Quantitative data are therefore fundamental to microbiology and statistics provides
with the techniques for organisation, presentation, analysis and interpretation of these data.
Statistics  can  be  of  two  types. Descriptive  statistics summarise  data,  visually  or,  usually,
numerically. In contrast, inferential statistics are used to interpret and draw conclusions from
our data. Some studies do not require statistical analysis, e.g. if they involve only qualitative
data. In practise, most generate quantitative data and require statistical analysis. It is therefore
essential for any microbiologist to understand the principles underlying statistical analysis and
to identify the statistical methods required for collecting or analysing data. 

The discussion below outlines some of the basic principles of statistics as applied to
continuous data in relatively simple situations. It is not possible to discuss the wide range of
microbiological data encountered, complex experimental design, or all of the assumptions on
which  the  analyses  are  based,  but  the  principles  apply  throughout.  Statistical  analysis
necessarily involves mathematics and equations and these are presented in boxes. In the past,
these calculations were performed on calculators or spreadsheets, but now routinely involve
statistical  software  packages.  While  this  is  convenient,  often  necessary  and generates  more
detailed information, it does introduce the real danger of accepting software output without
understanding the underlying principles and can lead to mis-interpretation. 

The Microbiology and Societal Context
Statistical analysis is required for any microbiological study that involves quantitative data. It
therefore cuts across, and is required in all aspects of microbiology and SDGs.

1. General comments
a. Populations and samples. In analysing data, we distinguish between a population,

which is the largest collection of entities for which we have an interest, e.g. all bacteria in a
culture, or several cultures grown under different conditions. It is rarely feasible to measure
properties of each member of a population and we usually measure properties of a portion or
sample of the population, from which we infer properties of the population. In doing this it is
important to sample populations randomly to avoid bias i.e. each member of the population
should have an equal chance of being chosen. Precision and, consequently,  the amount of
information we obtain, increase as the number of samples and sample size increase. 

b. Variability  and error.   Statistical analysis is required because of variability, e.g.
bacterial abundance in pasteurised milk from different shops or in different cartons will differ.
Some of this variability will be systematic (potentially explainable), while some will be random or
experimental error. The latter arises because of inherent variability in the experimental material
or  lack of  uniformity  in physical  conduct  of the experiment.  Both types  of error must  be
minimised to improve the power of any statistical tests, e.g. by handling experimental material
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to reduce the effects of inherent variability, refining experimental technique or common sense. 
c. Replication.   One technique  for  reducing  error  is  replication.  If  a  treatment

appears more than once in an experiment it is said to be replicated. Replication serves two
major functions. First, it provides an estimate of experimental error, which is required for tests
of significance and confidence limits. If there is just one treatment i.e. a single replicate, there
is  no  information  about  experimental  error  and  it  is  impossible  to  determine  whether
differences  between this  treatment and another are due to differences  in treatments  or  to
differences  between  experimental  units.  Second,  replication  improves  the  precision  of  an
experiment by reducing the standard deviation of the treatment mean (see below). 

The number of replicates required depends on the precision required, which may
be difficult to decide in advance, but it is pointless performing an experiment that will not give
the required precision. There are other sophisticated ways of reducing experimental error but
most are just common sense. Elimination of careless technique is essential, as this is often non-
random and biased and constitutes inaccuracy rather than variability. 

d.  Precision  and  accuracy.  Precision  and  accuracy  are  considered  synonymous
colloquially, but have different meanings in statistical analysis. Both are measures of error but
accuracy describes how close observations are to their ‘true’ value, while precision describes
how close measurements are to each other.

2. Descriptive statistics
a. Averages. Averages  or  measures  of  central  tendency  are  important  ways  of

describing data. For example, if we measure the length of 100 cells, we could present the data
as a list or a histogram, but it is much more convenient to describe it as an average. The most
common measure of the average is  the mean (Box 1),  which is  easy to calculate,  stable  to
fluctuations in sampling and capable of algebraic manipulation. Another average is the median,
the central value when all  measurements  are ordered, which is  more stable with respect to
extreme values. 

b. Variability. A more complete description of data requires a measure of scatter or
variability, the two most common being the variance and the standard deviation.  We could
quantify  variability  by  summing the  difference  between  each value  and the  mean,  but,  by
definition, this sum would = 0. The squares of each difference will be positive and the sum of
these squares is called the total corrected sum of squares (SS). SS increases with population or
sample  size,  and  so  must  be  standardised  to  compare  different  sized  populations.  For
populations, this is achieved by dividing SS by the population size, N, but for sample means we
divide by  n – 1, where  n is the sample size (Box 1). This reduces bias and overconfidence in
estimating variability in the population from that in a sample. This bias results from the fact
that we have already calculated total variability when calculating the mean and can therefore
calculate the nth difference once we know the other n – 1 values. Therefore we say that this final
value is ‘not free to move’ and that we have n – 1 degrees of freedom. The values we obtain are
called the population or sample variance, but its units are the square of our measurements, e.g.
cm2,  which is  not very intuitive, and it is more usual to describe variability as the  standard
deviation, which is the square root of the variance (see Box 1).  The standard deviation can be
viewed as the average distance of values from the mean.
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c. Correlation  coefficient.  The  statistics  above  are  ‘univariate’,  involving  a  single
variable,  e.g.  height.  We often measure two or more variables  in the  same individual,  e.g.
height,  weight,  age,  which  are  described  by  bivariate  or  multivariate  statistics,  respectively.
Associations  between  two  variables,  x  and  y,  can  be  visualised  by  plotting  them for  each
individual on the x and y axes. The strength of the association can be quantified by correlation
analysis and calculation of a correlation coefficient. One example is the Pearson’s r or product-
moment correlation (see Box 1). 

Equations  for  correlation  coefficients  are  more  complicated  (see  Box  1),  but  the
numerator represents covariance, a measure of how x varies with y, calculated as the sum of the
product of differences between each variate and its mean. This is equivalent to variance of
univariate data, while the denominator normalises this with respect to the standard deviations
of each variate. 

The  correlation  coefficient quantifies  the  strength of  the  association  between  two
variates  and has  no units,  as  it  represents  the ratio  of  variances.  It  has  values  between -1
(complete  negative  association),  through  0  (no  association)  to  +1  (complete  positive
association).  The  closer  to  -1  or  +1,  the  stronger  the  association.  It  not  a  measure  of
quantitative change of x with respect to y. Most importantly, it gives no information on cause
and effect. Thus, a high correlation coefficient does not mean that one variate is affecting, or is
affected by the other. 

d.  Linear  regression.  Linear  regression  quantifies  the  relationship  between  a
dependent variable y and an independent variable x. In this situation we have control of x and
assume that there is a linear relationship between y and x, e.g. the relationship between optical
density (y) and concentration (x). Linear regression estimates the strength of the relationship
and enables calculation of y for any value of x, but only within the range of x and y values that
you have measured. The relationship between x and y is represented by 

y=a+bx+E
where a and b are the intercept and slope of the line that minimise the error (E), i.e. they give
line  of  best  fit.  Equations  for  linear  regression are  given in Box 1 and statistical  software
provide other statistics on the quality of fit, confidence in a and b, etc. 

3. Inferential statistics 
a. Distributions.  The mean and variance are useful in describing the 'most likely

event' and the variation around it, but they are of more statistical use if we know how values
are  distributed.  Many  continuous  biological  characters  follow  the  Gaussian  or  Normal
distribution (Fig. 1). 

Fig. 1. Normal distribution of f(x), the
frequency of a variable x, as a function
of x.

Thus if x represents height of people, and f(x) the frequency of occurrence of different heights,
the plot of f(x) vs x will give a bell-shaped curve with mean, µ, and standard deviation, s. Note
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that the variation is continuous and distributed equally about the mean, i.e. the distribution is
symmetrical and deviations from it are equally likely in each direction. In theory there are no
upper or lower limits to  x but the frequency of extremes is very low. The standard deviation
measures  the  distance from the mean to  the point  of inflexion on the curve.  (It  must  be
remembered, however, that not all things are distributed normally.) 

The normal distribution can be used to calculate the proportion of the population with
characteristics  above  or  below  a  particular  value.  However,  these  calculations  are  not
straightforward  without  the  use  of  computers  and  depend  on  µ and  σ .  Before  computer
software was readily available, this problem was solved using the standard normal distribution
or  z distribution.  If we subtract the population mean from each individual value, we would
have a mean of 0. Similarly, as the standard deviation is the average deviation from the mean,
division of each difference by the standard deviation will give a new standard deviation of 1.

Standardisation is therefore achieved using the equation: z=
x−μ
σ

. The z-distribution has the

same shape as the normal distribution, but with a mean of 0 and a standard deviation of 1. In
the past, this enabled calculation of different probabilities (areas under the curve) using tables
of the standard normal distribution, and this transformation now makes computation quicker.
Both  normal  and  z-distributions  can  be  described  by  an  equation  (see  Box  1)  and
approximately 68% of values fall within the mean ± standard deviation, while 95% and 99.7%
fall within 2 and 3 standard deviations of the mean (Fig 2).

Fig. 2. Standardised normal or  z-distribution,
indicating  the  probabilities  (areas  under  the
curve) within the mean ± 1, 2 and 3 standard
deviations. 

b. Statistical significance.  Inferential statistics enables us to draw conclusions from
our data. For example, we may want to know if bacteria grow differently on different media or
at  different  temperatures.  Effectively  this  is  hypothesis  testing,  in  that  we  are  testing  the
hypothesis that the medium or temperature affect growth. Any test of an idea or hypothesis,
either  from theoretical  reasoning  or  suggested  by  results  from earlier  experiments,  should
involve a clear statement of objectives and we define the Null Hypothesis, which is given the
symbol Ho. Statistically, Ho is a statement of 'no difference' between two sampled populations
that may be expected to differ, e.g. through different treatments.

Significance tests are the basis of inferential statistical analysis and will be discussed
initially by imagining the situation where we have sampled two different populations, X and Y,
that  we suspect  to be different.  We are therefore testing the null  hypothesis,  Ho,  that  the
population means are equal,  µ1 =  µ2, but we can perform the test by placing emphasis on an
alternative hypothesis, HA,  µ1 > µ2, ignoring any evidence that µ1 < µ2. We take samples from
each population and calculate sample means, x1 and x2. If x1> x2, then we might reject Ho in
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favour of HA. However, this result may be because µ1 really is greater than µ2 or because it just
so happens that the samples taken made it look like that, because of the uncontrolled sources
of error and variation. This is always a risk when sampling. The smaller the sample and the
smaller the difference between µ1 and µ2, the greater the risk.

To distinguish between these reasons and to choose Ho or HA we must introduce the
concept of significance. To do this we calculate the probability that a difference at least as
extreme as x1−x2 (the observed difference) arose by chance on the assumption that Ho is true
(i.e. µ1 = µ2. If the probability is small, then we may conclude with reasonable (but not absolute)
certainty  that  the  difference  is  real.  If  the  probability  is  large  then  we  conclude  that  the
difference is not real but arose from chance as a result of sampling and experimentation.

c. Standard error and confidence intervals. We must now consider our confidence that
the sample mean accurately represents the population mean. We could take many samples,
each giving a different mean, and it can be shown that the means of all of these samples is
distributed normally and that the standard deviation of the mean, also called the standard
error, is given by the equation sx=s /√n. This equation defines, quantitatively, how replication
increases our confidence that the sample mean reflects the population mean, with variance
decreasing, and accuracy increasing, in proportion to the square root of the sample size. 

Data  are  often  presented  as  the  mean  ± standard  deviation or  standard  error.  An
alternative is to use confidence limits which will contain a parameter with a probability of 95%
(or some other value). These are called the 95% confidence limits and, for large sample sizes,
can be determined using the standardised normal distribution, based on our sample mean and
standard  deviation:  z=(x−x)/ s.  Now,  we  want  to  know  the  value  of  x that  will  give  a
probability of 2.5%. This value is 1.96 (see Fig. 2), so the equation becomes:  x=x ±1.96 s. If
the  sample  size  is  relatively  small  (<40)  we  would  use  the  equivalent  value  from  the  t-
distribution (see below) rather than the normal distribution. 

d. Student’s t-test. Suppose we want to test a theory that predicts that the diameter of
a fungal hypha, under certain conditions, will be 11 µm, i.e. that the population mean, µ = 11
µm. In statistical terms we are testing the null hypothesis Ho: µ = µo = 11 and we measure the
diameter of 100 hyphae and calculate a sample mean of 11.14 and a standard error of 0.11 µm.
We then transform our variable to the standardised normal distribution, i.e. if Ho is true, then
z = (  - 11)/0.11 is normally distributed with mean 0 and variance 1. 

We assess the significance of the observed value x = 10.86 by calculating the probability
that a mean value at least as extreme as 10.86 can occur by chance, assuming Ho is true. Any
value less than 10.86 is certainly more extreme than the observed x, but so also is any value
greater than 11.14, i.e. we must consider extremities above or below the mean and determine
the probability that  x < 10.86 and  x > 11.14. This probability (calculated from tables of z-
distribution or from computer software) is 2 x 0.102 = 0.204. This means that if Ho is true we
would  expect  a  sample  mean  of  10.86  from approximately  20%,  one sample  in  five.  We
therefore  cannot  conclude  that  Ho is  false.  i.e.  µ  =  11  with  a  probability  of  1  in  5.  By
convention, we start doubting Ho when the probability reaches approximately 1 in 20, or 5%
(0.05). This is sometimes described as the 5% or 0.05 level of significance. 

No  null  hypothesis  may  be  considered  in  isolation.  There  is  always  an  alternative
hypothesis, HA, even if it is not stated explicitly. Above we tested Ho:µ = µo against HA:µ  µo i.e.
µ < µo. Therefore, when we considered values of x at least as extreme as the observed x = 10.86
this included any value < 10.86 but also any value > 11.14. This is called a two-tailed test. If we
had declared HA:  µ <  µo then any  x > 11 would not have been extreme, since it would have
been more likely to come from a population with µ = 11 than with µ < 11. So in this case we
would use a one tailed test and would have obtained a probability of 0.102.
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Another consideration is sample size. With large sample sizes,  n > 30-40,  x and  s are
reasonably accurate estimates of  µ and  s. However, for smaller sample sizes, we cannot have
confidence in the accuracy of s2 and, rather than using the z distribution, we use the Student’s
t-distribution. We perform a similar transformation:  t=(x−μo)/sx and assume that  t  follows
the t-distribution with n -1 degrees. 

Note  that  in  both  of  these  examples,  the  statistic  being  calculated  contains  the
‘difference’ being investigated, while the denominator is a measure of experimental error. In
other words we are determining the ratio of an observed difference due to a potential effect as a
proportion of the experimental  error. This approach applies in the possibly more common
situation of comparing two sample means, rather than comparing one mean with a fixed value.
In this case, the numerator is the difference between the sample means, while the denominator
is a measure of the combined experimental error. For a small sample size and different sample
sizes, the equation estimation of common variance becomes more complicated (Box 1). 

e. Analysis  of variance.  In many experiments we want to compare several means,
rather than just two. For example, we might be investigating the effect of 5 different growth
media on biomass yield, with a null hypothesis that medium has no effect on biomass. We
have 4 replicates for each medium, giving a total of 20 biomass measurements, and calculate 5
mean values, each from 4 replicates. To assess whether growth medium affects yield, we can
perform an analysis of variance. 

The first step is to assess the mean and variance across all 20 cultures, the latter
being the total corrected sum of squares (see above). The analysis of variance splits this total
variance into a number of component parts which we believe to be related to different causal
circumstances  (treatments  or factors),  in our case use of different media,  and experimental
error.  It  calculates  the  variances  about  the  means  of  these  components  and  assesses  the
significance of these variances.

In our case we have two sources of variation, treatment (growth media) and inherent
variation  (experimental  error).  Experimental  error  can  be  estimated  by  calculating,
independently, the sum of squares within each treatment and then summing these values to
give the ‘within sum of squares, SSwit. If growth medium affects biomass, then SSwit will be less
than SStot, and the remaining variance due to the treatment, i.e. between treatment variance or
SSbet. 

There will always be some random variation but if this is larger than we would expect
then there may be no real difference between treatments. We therefore draw up an Analysis of
Variance (AOV) Table (Box 2) which contains the sum of squares. It also contains the within
and between mean squares, which are the sum of squares divided by the respective number of
degrees of freedom. If Ho is true, and there is no treatment effect, we would expect the  MS
values to be approximately equal as both will estimate total variance. We therefore calculate the
ratio of MS values  (the variance ratio)  and either compare with tabulated  values  of the  F-
distribution for a probability of 0.05 with the appropriate degrees of freedom, or use statistics
software to generate a p value. F-distribution values are based on degrees of freedom associated
with both between and within variation. 

Pupil participation

1. Class discussion of the importance of replication and statistical analysis underpinning
scientific discoveries reported in the news. 

2. Exercises
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a. Basic descriptive statistics can be calculated for pupil characteristics, e.g. height, 
weight. The effect of sample size and the standardised normal distribution can be illustrated by 
measuring height in samples of different size and correlation coefficients can be calculated for 
height and age. Inferential statistics can be illustrated by comparison of means of different 
groups within a class, or between different classes.

b. The covid pandemic has highlighted the need for quantitative microbiological
data and limitations in basic understanding of these data and the statistical analyses employed.
Published  covid  statistical  data  can  therefore  be  used  to  illustrate  the  basic  principles  of
statistics and ways in which data can be interpreted, and misinterpreted. 

Further reading

There are many introductory books on statistics, including those for those studying biology and
microbiology,  and  equally  good  web  sites,  a  good  example  being
https://www.scribbr.com/category/statistics/. 
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Box 1. Statistical equations referred to in text.

Population mean μ=
∑ X

N
, where N is population size and X is individual measurement

Sample mean x=
∑ x

n
 where n is population size and x is individual measurement

Variability:

Population: Total corrected sum of squares ¿∑ (X−μ)
2
 , variance σ 2=∑ (X−μ)

2

N
, standard deviation σ=√∑ (X−μ)

2

N

Sample: Total corrected sum of squares ¿∑ (x−x)
2
 , variance s2=∑ (x−x)

2

N
, standard deviation s=√∑( x−x)

2

n

Correlation coefficient r xy=
cov (x , y)
sx s y

 = r xy=
n∑ XY−∑ X∑ Y

√¿¿¿
, where X and Y are individual measurements of two variates, X and Y.

Linear regression

Slope b=
∑ (x−x )( y− y )

∑ ( x−x )
2 , intercept a= y−b x, where x and y are individual measurements of an independent variable x and a dependent

variable y. 
t-test for comparison of means with unequal sample sizes

t-statistic 
t=

x1−x2

√s p2 (1n+ 1m )
, where common variance 

sp
2
=
∑ x1

2
−

(∑ x1 )
2

n
+∑ x2

2
−

(∑ x2)
2

m
n+m−2

 and x1∧x2 are means of two samples of size n and m. 
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Box 2. Analysis of variance table.
Source of variation Corrected SS df MS Variance ratio
Between (treatment) SSbet k−1 SSbet

k−1

MSbet
MSwit

=F(k−1 , N−1)

Within (error) SSwit (N−1 )−(k−1) SSwit
(N−1 )−(k−1)¿

¿

Total SStot N−1
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